22 research outputs found

    The complexity of dominating set reconfiguration

    Full text link
    Suppose that we are given two dominating sets DsD_s and DtD_t of a graph GG whose cardinalities are at most a given threshold kk. Then, we are asked whether there exists a sequence of dominating sets of GG between DsD_s and DtD_t such that each dominating set in the sequence is of cardinality at most kk and can be obtained from the previous one by either adding or deleting exactly one vertex. This problem is known to be PSPACE-complete in general. In this paper, we study the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem remains PSPACE-complete even for planar graphs, bounded bandwidth graphs, split graphs, and bipartite graphs. We then give a general scheme to construct linear-time algorithms and show that the problem can be solved in linear time for cographs, trees, and interval graphs. Furthermore, for these tractable cases, we can obtain a desired sequence such that the number of additions and deletions is bounded by O(n)O(n), where nn is the number of vertices in the input graph

    Token Jumping in minor-closed classes

    Full text link
    Given two kk-independent sets II and JJ of a graph GG, one can ask if it is possible to transform the one into the other in such a way that, at any step, we replace one vertex of the current independent set by another while keeping the property of being independent. Deciding this problem, known as the Token Jumping (TJ) reconfiguration problem, is PSPACE-complete even on planar graphs. Ito et al. proved in 2014 that the problem is FPT parameterized by kk if the input graph is K3,â„“K_{3,\ell}-free. We prove that the result of Ito et al. can be extended to any Kâ„“,â„“K_{\ell,\ell}-free graphs. In other words, if GG is a Kâ„“,â„“K_{\ell,\ell}-free graph, then it is possible to decide in FPT-time if II can be transformed into JJ. As a by product, the TJ-reconfiguration problem is FPT in many well-known classes of graphs such as any minor-free class

    Fixed-Parameter Tractability of Token Jumping on Planar Graphs

    Full text link
    Suppose that we are given two independent sets I0I_0 and IrI_r of a graph such that ∣I0∣=∣Ir∣|I_0| = |I_r|, and imagine that a token is placed on each vertex in I0I_0. The token jumping problem is to determine whether there exists a sequence of independent sets which transforms I0I_0 into IrI_r so that each independent set in the sequence results from the previous one by moving exactly one token to another vertex. This problem is known to be PSPACE-complete even for planar graphs of maximum degree three, and W[1]-hard for general graphs when parameterized by the number of tokens. In this paper, we present a fixed-parameter algorithm for the token jumping problem on planar graphs, where the parameter is only the number of tokens. Furthermore, the algorithm can be modified so that it finds a shortest sequence for a yes-instance. The same scheme of the algorithms can be applied to a wider class of graphs, K3,tK_{3,t}-free graphs for any fixed integer t≥3t \ge 3, and it yields fixed-parameter algorithms

    Reconfiguration of Cliques in a Graph

    Full text link
    We study reconfiguration problems for cliques in a graph, which determine whether there exists a sequence of cliques that transforms a given clique into another one in a step-by-step fashion. As one step of a transformation, we consider three different types of rules, which are defined and studied in reconfiguration problems for independent sets. We first prove that all the three rules are equivalent in cliques. We then show that the problems are PSPACE-complete for perfect graphs, while we give polynomial-time algorithms for several classes of graphs, such as even-hole-free graphs and cographs. In particular, the shortest variant, which computes the shortest length of a desired sequence, can be solved in polynomial time for chordal graphs, bipartite graphs, planar graphs, and bounded treewidth graphs

    Reconfiguration on sparse graphs

    Full text link
    A vertex-subset graph problem Q defines which subsets of the vertices of an input graph are feasible solutions. A reconfiguration variant of a vertex-subset problem asks, given two feasible solutions S and T of size k, whether it is possible to transform S into T by a sequence of vertex additions and deletions such that each intermediate set is also a feasible solution of size bounded by k. We study reconfiguration variants of two classical vertex-subset problems, namely Independent Set and Dominating Set. We denote the former by ISR and the latter by DSR. Both ISR and DSR are PSPACE-complete on graphs of bounded bandwidth and W[1]-hard parameterized by k on general graphs. We show that ISR is fixed-parameter tractable parameterized by k when the input graph is of bounded degeneracy or nowhere-dense. As a corollary, we answer positively an open question concerning the parameterized complexity of the problem on graphs of bounded treewidth. Moreover, our techniques generalize recent results showing that ISR is fixed-parameter tractable on planar graphs and graphs of bounded degree. For DSR, we show the problem fixed-parameter tractable parameterized by k when the input graph does not contain large bicliques, a class of graphs which includes graphs of bounded degeneracy and nowhere-dense graphs

    Independent Set Reconfiguration in Cographs

    Get PDF
    We study the following independent set reconfiguration problem, called TAR-Reachability: given two independent sets II and JJ of a graph GG, both of size at least kk, is it possible to transform II into JJ by adding and removing vertices one-by-one, while maintaining an independent set of size at least kk throughout? This problem is known to be PSPACE-hard in general. For the case that GG is a cograph (i.e. P4P_4-free graph) on nn vertices, we show that it can be solved in time O(n2)O(n^2), and that the length of a shortest reconfiguration sequence from II to JJ is bounded by 4n−2k4n-2k, if such a sequence exists. More generally, we show that if XX is a graph class for which (i) TAR-Reachability can be solved efficiently, (ii) maximum independent sets can be computed efficiently, and which satisfies a certain additional property, then the problem can be solved efficiently for any graph that can be obtained from a collection of graphs in XX using disjoint union and complete join operations. Chordal graphs are given as an example of such a class XX

    Shortest Reconfiguration of Matchings

    Full text link
    Imagine that unlabelled tokens are placed on the edges of a graph, such that no two tokens are placed on incident edges. A token can jump to another edge if the edges having tokens remain independent. We study the problem of determining the distance between two token configurations (resp., the corresponding matchings), which is given by the length of a shortest transformation. We give a polynomial-time algorithm for the case that at least one of the two configurations is not inclusion-wise maximal and show that otherwise, the problem admits no polynomial-time sublogarithmic-factor approximation unless P = NP. Furthermore, we show that the distance of two configurations in bipartite graphs is fixed-parameter tractable parameterized by the size dd of the symmetric difference of the source and target configurations, and obtain a dεd^\varepsilon-factor approximation algorithm for every ε>0\varepsilon > 0 if additionally the configurations correspond to maximum matchings. Our two main technical tools are the Edmonds-Gallai decomposition and a close relation to the Directed Steiner Tree problem. Using the former, we also characterize those graphs whose corresponding configuration graphs are connected. Finally, we show that deciding if the distance between two configurations is equal to a given number ℓ\ell is complete for the class DPD^P, and deciding if the diameter of the graph of configurations is equal to ℓ\ell is DPD^P-hard.Comment: 31 pages, 3 figure

    The Galactic Center Black Hole Laboratory

    Full text link
    The super-massive 4 million solar mass black hole Sagittarius~A* (SgrA*) shows flare emission from the millimeter to the X-ray domain. A detailed analysis of the infrared light curves allows us to address the accretion phenomenon in a statistical way. The analysis shows that the near-infrared flare amplitudes are dominated by a single state power law, with the low states in SgrA* limited by confusion through the unresolved stellar background. There are several dusty objects in the immediate vicinity of SgrA*. The source G2/DSO is one of them. Its nature is unclear. It may be comparable to similar stellar dusty sources in the region or may consist predominantly of gas and dust. In this case a particularly enhanced accretion activity onto SgrA* may be expected in the near future. Here the interpretation of recent data and ongoing observations are discussed.Comment: 30 pages - 7 figures - accepted for publication by Springer's "Fundamental Theories of Physics" series; summarizing GC contributions of 2 conferences: 'Equations of Motion in Relativistic Gravity' at the Physikzentrum Bad Honnef, Bad Honnef, Germany, (Feb. 17-23, 2013) and the COST MP0905 'The Galactic Center Black Hole Laboratory' Granada, Spain (Nov. 19 - 22, 2013

    Token Sliding on Split Graphs

    No full text

    Vertex Cover Reconfiguration and Beyond

    No full text
    Abstract. In the Vertex Cover Reconfiguration (VCR) problem, given graph G = (V,E), positive integers k and `, and two vertex cov-ers S and T of G of size at most k, we determine whether S can be transformed into T by a sequence of at most ` vertex additions or re-movals such that each operation results in a vertex cover of size at most k. Motivated by recent results establishing the W[1]-hardness of VCR when parameterized by `, we delineate the complexity of the problem restricted to various graph classes. In particular, we show that VCR re-mains W[1]-hard on bipartite graphs, is NP-hard but fixed-parameter tractable on graphs of bounded degree, and is solvable in time polyno-mial in |V (G) | on even-hole-free graphs and cactus graphs. We prove W[1]-hardness and fixed-parameter tractability via two new problems of independent interest.
    corecore